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Abstract
Motivated by placement of jobs in physical machines, we introduce and analyze the
problem of online recoloring, or online disengagement. In this problem, we are given a
set of n weighted vertices and a k-coloring of the vertices (vertices represent jobs, and
colors represent physical machines). Edges, representing conflicts between jobs, are
inserted in an online fashion. After every edge insertion, the algorithm must output a
proper k-coloring of the vertices. The cost of recoloring a vertex is the vertex’s weight.
Our aim is to minimize the competitive ratio of the algorithm, i.e., the ratio between
the cost paid by the online algorithm and the cost paid by an optimal, offline algorithm.
We consider a couple of polynomially-solvable coloring variants. Specifically, for 2-
coloring bipartite graphs we present an O(log n)-competitive deterministic algorithm
and an �(log n) lower bound on the competitive ratio of randomized algorithms. For
(� + 1)-coloring, where � is the maximal node degree, we present tight bounds
of �(�) and �(log�) on the competitive ratios of deterministic and randomized
algorithms, respectively (where � denotes the maximum degree). We also consider
the fully dynamic case which allows edge deletions as well as insertions. All our
algorithms are applicable to the case where vertices are arbitrarily weighted, and all
our lower bounds hold even in the uniform weights (unweighted) case.
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1 Introduction

The following situation is not uncommon in server farms, such as a data center of a
cloud provider: Jobs (or virtual machines) are created and located at various physical
machines, and then it turns out that some of the jobs cannot co-exist on the same
machine. Such restrictions may be due to various reasons, e.g., conflicting resource
requirements, security considerations etc. (cloud providers allow users to express these
constraints using so-called “anti-affinity rules:” see, e.g., [1]). When such a conflict
arises between co-located jobs, at least one of these jobs must migrate to another
machine, at a cost.Motivated by such scenarios, in this we introduce and study theDis-
engagement Problem, in which disengagement (anti-affinity) requests arrive online,
and the goal is to minimize the overall cost of job migrations.

More specifically, we abstract the problem as follows (more details in Sect. 2). We
view the problem as an online graph coloring problem with recourse. Initially, we
are given a vertex-weighted graph G0 = (V ,∅) of n isolated vertices, and a coloring
c0 : V → [k], where k ∈ N is a given parameter.1 (Vertices correspond to jobs and
colors correspond to machines.) The input is a sequence of edges e1, e2, . . ., that arrive
one at a step. After each step i , we are required to output a new proper vertex coloring
ci : V → [k] such that under ci , no edge in e1, . . . , ei is monochromatic. The cost of a
given sequence of colorings c0, c1, . . . is the total weight of recolorings, i.e., the sum,
over all vertices, of vertex weight times the number of times that vertex was recolored.
Due to this formalization, in this paper we refer to the problem interchangeably as
Vertex Recoloring or Disengagement.

We note that in many cases, disengagement restrictions are temporary. We refer
to this setting as “fully-dynamic disengagement,” as opposed to “partially-dynamic
disengagement”, in which edges are only added, and never removed. In this work, we
mainly focus on the partially-dynamic variant.

Our Results We study online disengagement from the competitive analysis view-
point [16]. That is, an algorithm for online disengagement is said to be c-competitive
for some c ≥ 1 if the following holds: given any instance, the recoloring cost of
the algorithm is at most c times that of the optimal offline algorithm. (Note that an
optimal offline solution never recolors a vertex more than once.) Since vertex color-
ing is a hard problem [18], we focus on two cases which are polynomially solvable,
namely 2-colorable graphs and (� + 1)-coloring, where � denotes the maximum
vertex degree.

1. For 2-coloring, we give a deterministic, O(log n)-competitive algorithm. We also
show a matching lower bound of �(log n) on the competitiveness of randomized
algorithms.

2. For (� + 1)-coloring, we present:

• A deterministic, O(�)-competitive algorithm, and a matching �(�) lower
bound.

• A randomized, O(log�)-competitive algorithm, and a matching �(log�)

lower bound.

1 We use the notation [k] def= {1, 2, . . . , k}.
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In Sect. 5.1, we give general lower bounds for the disengagement problem on a
graph of n nodes with k colors: we show an �(k log n

k ) lower bound for deterministic
algorithms, and an �(log k log n

k ) lower bound for randomized algorithms.
We also briefly mention capacitated disengagement in Sect. 5.2, wherein there is a

restriction upon the total weight that can be assigned to each color. If the total permis-
sible weight (across all colors) equals the total vertex weight, we show a deterministic
competitive ratio lower bound of �(n), and a randomized lower bound of �(log(n)).

In all the above cases, our algorithms work with weighted vertices, and our lower
bounds apply even to unweighted instances.

Wediscuss the variant of fully-dynamic online disengagement, inwhich conflicts are
temporary, as opposed to the partially-dynamic disengagement inwhich conflicts never
disappear (see formalization in Sect. 2). It turns out that fully-dynamic disengagement
is substantially harder than partially-dynamic disengagement. More specifically, even
though in this case the offline cost is not bounded by n, all lower bounds of the
partially-dynamic case apply as well. We also show that the special case of fully-
dynamic disengagement with two colors on an odd cycle (which of course is not
2-colorable in the partially-dynamic case) is at least as hard as a certain metrical task
system on an odd cycle, and hence admits a lower bound of �(n)-competitiveness
for deterministic algorithms (whereas the partially-dynamic problem on even cycles
is solvable by an O(log n)-competitive deterministic algorithm).

Our Techniques For the bipartite (2-coloring) problem, our algorithm maintains a
partition of the vertices into connected components. Since there are two colors, each
connected component has exactly two legal colorings. When two components merge
due to the arrival of amonochromatic edge, the algorithmmust choose between the two
legal colorings for that new component, where each coloring implies recoloring one of
the joined components. There are two natural heuristics for choosingwhich component
to recolor. The greedy approach is to recolor the lighter component; another approach,
with an eye to the offline solution (which, knowing all future edges, recolors every ver-
tex at most once), is to recolor so as to minimize the change from the initial coloring of
the graph (as measured in weighted Hamming distance). However, it is not hard to see
that each of these algorithms has �(n) competitive ratio (cf. Sect. 3.1). Fortunately, it
turns out that by a careful combination of these two noncompetitive approaches (using
amortized analysis), we can obtain an O(log n)-competitive deterministic algorithm.

For (� + 1)-coloring, the key observation is that vertices that are recolored by
the optimal algorithm must be incident on all edges which are monochromatic by
their initial coloring. Therefore, our algorithm maintains a vertex cover of the edges
which are monochromatic by their initial coloring. In our algorithm, upon the arrival
of an edge, only vertices in that vertex cover are allowed to change their color. This
way, we limit the set of vertices that change their color. Coupling this with an upper
bound on the total number of recolorings which a vertex undergoes (using �), we
can prove a bound on the competitive ratio. Specifically, we maintain a 2-approximate
weighted vertex cover using the primal-dual (local ratio) 2-competitive algorithm;
when a monochromatic edge arrives, an appropriate vertex from the vertex cover is
recolored by a color not taken by any of its neighbors. In the deterministic case, which
achieves O(�)-competitiveness, the new color is an arbitrary available color, and in
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the randomized case, the new color is a random (uniformly chosen) available color. In
the latter case, some subtle probabilistic analysis shows O(log�)-competitiveness.

Related Work We do not know of previous work on competitive recoloring of
vertices: some considered recoloring, some considered competitive coloring, but this
is the first work to consider both simultaneously. We review some relevant results
below.

Competitive Coloring Let us start with competitive coloring.Work on online vertex
coloring, startingwith the paper of Lovász et al. [15], assume that vertices arrive one by
one, each vertex with all its incident edges. When a vertex arrives it must be assigned
a color irrevocably, maintaining a legal vertex coloring at all times. The goal is to
minimize the number of colors used by the algorithm. It is known that the competitive
ratio in this case is �(n/ log n) [10, 11].

Dynamic Algorithms for RecoloringRecoloring has been considered in the dynamic
data structures setting, in which one seeks to maintain a proper coloring while mini-
mizing the number of recolorings per vertex/edge update (arrival or departure); see,
e.g., [5, 8, 14, 17]. This model differs from ours in that we do not measure costs
w.r.t. the number of steps, but w.r.t. an optimal recoloring algorithm opt for the input
sequence. In particular, when opt � T , where T is the length of the input sequence,
we remain competitive against opt (rather than T ); however, in dynamic recoloring
(or recoloring with recourse), a constant number of recolorings per edge arrival results
in �(T ) cost.

For general graphs, coloring a graph using a competitively-small palette (w.r.t. its
chromatic number) is NP-hard; thus, restricting the set of graphs or their chromatic
number is necessary for polynomial running time. This is the case for the work of
Kashyop et al. [14] (which focuses on bipartite graphs, max-degree bounded graphs,
and graphs with bounded arboricity), and Bosek et al. [8] (which focuses on interval
graphs). Indeed, our work also focuses on coloring problems which can be tackled
in polynomial time, namely 2-coloring and (� + 1)-coloring. However, one can also
consider coloring in general graphs, using an (exponential time) oracle for graph
coloring. This is the case for the works of Barba et al. [5] and Solomon and Wein
[17]. The best current result, due to [17], is a deterministic algorithm that maintains a

coloring which is O(
log3 n
d )-competitive with respect to the number of colors (against

the graph’s chromatic number), while using O(d) amortized recolorings per update,
where d is a free parameter (allowing randomization improves this result slightly).
Henzinger et al. [13] give better results for bounded arboricity graphs.

Dynamic Graph Partitioning A problem closely related to online disengagement
is “dynamic balanced graph partitioning,” introduced by Avin et al. [2, 3]. In this
problem vertices are located in finite-capacity clusters (servers), and communication
requests arrive online. Communication between vertices incurs cost unless the vertices
are located in the same cluster. Vertices can migrate to other clusters, at a (larger) cost,
and the algorithm is required to find a placement of the vertices in clusters at each step.
The goal is to minimize cost, and the overall measure is the competitive ratio, possibly
with resource augmentation (i.e., assuming that the capacity available to the algorithm
is larger than the capacity available to the adversary). Intuitively, this problem is the
flip side of disengagement: In partition, requests are to collocate vertices (subject to
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capacity constraints), whereas in disengagement, requests are to separate them. In [3],
the fully-dynamic variant of the partition problem is considered, where collocation
requests are temporary: a pair of vertices may be collocated by a request and later
separated. It is shown in [3] that the competitive ratio of deterministic algorithms for
the dynamic case is O(k log k) and �(k), where k is the capacity of a cluster (both
bounds allow for resource augmentation). Recently, the partially-dynamic variant of
the partition problem was considered, in which it is guaranteed that there exists a
feasible placement of the vertices to clusters so that all communication is local (i.e.,
occurs within a cluster). In [12], tight bounds on the competitive ratios of deterministic
and randomized algorithms for partially-dynamic partition are given: �(� logW ) and
�(log � + logW ), respectively, where � is the number of servers and W is the server
capacity.

Paper Organization The remainder of this paper is organized as follows. In Sect. 2
we formalize the model and introduce some notation. In Sect. 3 we study the bipartite
case. In Sect. 4 we study (� + 1)-disengagement. In Sect. 5 we prove a general lower
bound for recoloring using k colors, and also discuss the capacitated case. In Sect. 6
we consider fully-dynamic disengagement. We conclude in Sect. 7 with a few open
problems.

2 Model and Notation

Preliminaries Given a natural number k, we use [k] to denote {1, 2, . . . , k}. In this
paper we are concerned with colorings of vertices in graphs. Given an undirected
simple graph G = (V , E), a proper k-coloring of G is an assignment c : V → [k]
such that c(u) �= c(v) for all (u, v) ∈ E .

We shall use the following definition extensively.

Definition 2.1 Let G = (V , E) be a graph, and let w : V → R
+ be a vertex weight

function. Let c, c′ be two colorings of a graph G. The weighted Hamming distance

between c and c′, denoted δH (c, c′), is δH (c, c′) def= ∑
v : c(v) �=c′(v)w(v).

Problem Statement In this paper, we study the following problem.

Online Disengagement (Vertex Recoloring)
Initial Input:

• A set V of n vertices with weights w : V → R
+

• The number of colors k ∈ N

• A k-coloring c0 of V

Online Input: In each step i = 1, . . . ,m, an edge ei between two vertices of V .
Output: After each step i , a proper k-coloring of the vertices ci w.r.t edges
{e1, . . . , ei }.
Goal: Minimize the total weight of vertex recolorings, i.e.,

∑m
i=1 δH (ci−1, ci ).

We use Ei = {e1, e2, . . . , ei } to denote the set of edges that have arrived up to and
including the i th step, and we use Gi = (V , Ei ) to denote the known graph after step
i .

123



2006 Algorithmica (2023) 85:2001–2027

Note that in Online Disengagement, as is the case for any partially-dynamic graph
problem, the input sequence length can be assumed to be finite without loss of gener-
ality, as there are only

(n
2

)
possible distinct edges connecting vertices of V .

SpecialCases In this paperwe consider some special cases of online disengagement.
The variants we consider are the following.

• In Unweighted Online Disengagement, all vertices have weight 1.
• In Bipartite Online Disengagement, we are guaranteed that the input graph is
2-colorable.

• In (� + 1) Online Disengagement, we are guaranteed that the maximum degree
of the input graph does not exceed �, and the available number of colors is �+1.

Capacitated Disengagement
In Sect. 5.2 we consider capcitated disengagement, in which each color i ∈ [k] has

a capacity Wi > 0, and the total weight of vertices colored i must not exceed Wi .
Fully-dynamic Disengagement
Online disengagement, as stated above, is called partially dynamic, in the sense

that edges only arrive and never leave. However, in some cases, the presence of edges
restricting the solution may be temporary. In the fully-dynamic online disengagement
variant, edges may leave too. The input and the output to the problem, as well as the
cost measure, are the same, but the feasibility requirement is different: The coloring
output by the algorithm after each step need be a proper coloring for Gi = (V , E ′

i ),
where E ′

i ⊆ Ei . We discuss several different definitions of E ′
i in Sect. 6.1.

3 Bipartite Disengagement

In this section we consider disengagement for bipartite graphs and k = 2. In other
words, we are promised that the final graph G (and hence every intermediate graph)
is 2-colorable, and the requirement is to find, at each step, a legal 2-coloring, while
minimizing the overall cost.

Note that this case is stricter than (� + 1)-disengagement, since the maximum
degree � is typically large (the case � = 1 is trivial). Indeed, we show in this
section that the competitive ratio in this case is �(log n). We start with an O(log n)-
competitive deterministic algorithm for the weighted case, and then prove an�(log n)

lower bound on the competitive ratio of any (randomized) algorithm that holds even
in the unweighted case.

3.1 Simple Approaches

Any algorithm for 2-coloring maintains, throughout its execution, the partition of
the nodes into connected components. Since there are only 2 colors, each connected
component has twopossible proper colorings.Whenever two components are joined by
a new edge, if their colorings agree (i.e. the two ends of the arriving edge are colored
differently), the algorithm may output the previous coloring unaltered. Otherwise,
when the edge ismonochromatic, the algorithmmust decidewhich of the two colorings
is adopted by the newly created component: each coloring implies recoloring all nodes
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in one of the components being joined. There are two natural approaches one can
consider. One approach we call “greedy” is to recolor the component of the smaller
weight; another approach we call “conservative” is to choose the colorings which is
closer to the initial coloring. Both approaches are not competitive, as we show below.
For convenience, we refer to the two colors as red and blue.

The Greedy Algorithm First, consider the algorithm that always flips the color of
the smaller component (weight-wise). Assume without loss of generality that we have
at least two nodes initially colored red, and consider an input sequence of a connected
component in the form of a double star:

1. Create an edge between two arbitrary red nodes. The node that stays red becomes
the red hub, and the other one becomes the blue hub.

2. Do until there are no isolated nodes:

(a) Let v be some isolated node.
(b) Create a monochromatic edge between v and its matching hub.

Every isolated node is a component of size 1. When it is connected via an edge to the
component of the hubs (which is at least of size 2) the algorithm flips its color. In fact,
the online algorithm flips the color of every node in the graph except for the red hub
(paying a cost of n − 1), while the optimal algorithm only chooses the other coloring
for the two hubs, paying a cost of 1. We conclude that the competitive ratio of the
greedy algorithm is �(n).

The Conservative Algorithm Consider now the algorithm which always prefers the
coloring that is closer (i.e, smaller Hamming distance) to the initial coloring. Assume
w.l.o.g. that initially, at least half of the nodes are red. Now, we subject it to the
following input sequence, which creates a connected component in the form of a
chain:

1. Create an edge between two red nodes
2. Do until there are no isolated red nodes:

(a) Let v be some red, isolated node.
(b) If one of the chain end-nodes u is red, create an edge (u, v).
(c) Otherwise, create an edge between v and any of the chain end-nodes

The chain grows by one node each iteration; in half of the iterations is has an equal
number of blue and red nodes. When that happens, the following holds:

1. One of the chain end-nodes is red (since the chain is of even length)
2. Flipping the colors of all of the nodes in the chain does not increase the distance

from the initial coloring

Therefore, in every even iteration, a new edge connects two red nodes, to which the
algorithm responds by flipping the color of every node in the chain. Overall, the
algorithm pays a cost of �(n2), while an optimal algorithm colors at most half of
the nodes exactly once, or a cost of O(n). It follows that the competitive ratio of the
conservative algorithm is �(n) as well.
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Algorithm 1Recoloring for bipartite graphs, invoked upon arrival of edge ei = (u, v)

1: if ci−1(u) �= ci−1(v) then
2: ci := ci−1; return // no recoloring
3: end if // otherwise, u and v belong in different components
4: Let S1, S2 be the components of u and v in Gi−1, and let S be their common component in Gi
5: Let w(Si ) be the sum of the weights of the nodes in the set Si
6: Define colorings γ1 and γ2 by flipping the colors of components S1 and S2, respectively, i.e., for all

z ∈ V :

γ1(z) =
{
ci−1(z), if z /∈ S1
3 − ci−1(z), if z ∈ S1

γ2(z) =
{
ci−1(z), if z /∈ S2
3 − ci−1(z), if z ∈ S2

7: if δ(γ1�S) ≥ 2δ(γ2�S) then
8: ci ← γ2
9: else if δ(γ2�S) ≥ 2δ(γ1�S) then
10: ci ← γ1
11: else if w(S1) ≥ w(S2) then
12: ci ← γ2
13: else
14: ci ← γ1
15: end if

3.2 A Competitive Algorithm

While each approach discussed in Sect. 3.1 resulted in �(n) competitive ratio, the
following combination of them is O(log n)-competitive: If one of the two possible
coloring is such that at least two-thirds of the weighted nodes will have their original
color c0 (and therefore that coloring has less than half the Hamming distance to the
original coloring than the alternative), that alternative is chosen by the algorithm.
Otherwise, no coloring has a significantly smaller Hamming distance, and in this case
the algorithmprefers the “cheaper” coloring, i.e., the algorithm recolors the component
with the smaller weight.

Pseudocode of the algorithm to be executed upon the arrival of a new edge ei is
given in Algorithm 1. For a subset of nodes V ′, we use c�V ′ to denote the restriction of
the coloring c to the set of nodes V ′. For convenience, we write δ(c) as a shorthand for
δH (c, c0). We also use δ(c�V ′) to refer to δH (c�V ′ , c0�V ′), i.e. the weighted Hamming
distance between the coloring c and the initial coloring c0 restricted to the set of nodes
V ′.

We consider the partition of V into connected components. Let Pi be the set of
connected components after the arrival of ei , and define P0 = {{v} | v ∈ V }. Note
that in the bipartite case, the color of one node determines the coloring of all nodes in
its connected component. Therefore, if ei ismonochromatic upon arrival, it necessarily
connects two connected components S1, S2 ∈ Pi−1 into a new component S (cf. line
4).

We now analyze the algorithm. Specifically, we prove the following theorem.

Theorem 3.1 Algorithm 1 is O(log n)-competitive.
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Fix an input sequence {ei }i and an optimal coloring c∗, i.e., δ(c∗) is minimal among
all legal colorings of the final graph G. Denote r := δ(c∗), and let alg denote the cost
of Algorithm 1 on the given input sequence. We prove the theorem by showing that
alg ≤ O(r log r).

We start by showing that if a component is not colored by the optimum solution
and the algorithm in the same way, then the optimum solution recolors a significant
part of the component. We introduce some additional terminology.

• Given a connected component S and a coloring c, we say that S is well colored by
c if c�S= c∗�S is consistent with c∗. Otherwise, we say that S is badly colored.

• Let R ⊆ V be the subset of nodes v such that c∗(v) �= c0(v). By definition,
w (R) = r .

Proposition 3.2 For all i and all S ∈ Pi , if S is badly colored thenw(S) < 3w(S ∩ R).

Proof We prove the claim by induction on i , the number of edges inserted. For i = 0
we have that P0 is a collection of singletons. Let S = {v} ∈ P0. If S is badly colored
then by definitions, v ∈ R, and hence S ∩ R = S, proving the base case.

Assume now that the claim holds for all components in Pi−1. It suffices to show
that if a new component is created by the arrival of edge ei = (v1, v2), the claim holds
for that component. So assume that S is created by merging S1, S2 ∈ Pi−1, where
v1 ∈ S1 and v2 ∈ S2.

If ci−1(v1) �= ci−1(v2), then ci = ci−1, and thus the component S is badly colored
iff the components S1, S2 are both badly-colored (note that it cannot be that only one
is badly colored, since that would imply the infeasibility of c∗). Using the induction
hypothesis, if S is badly colored then

w (S) = w (S1) + w (S2) < 3(w (S1 ∩ R) + w (S2 ∩ R)) = 3w (S ∩ R) ,

completing the proof for the case that ci−1(v1) �= ci−1(v2).
Assume henceforth that ci−1(v1) = ci−1(v2). When the component S is formed,

the algorithm considers the two colorings γ1 and γ2 for S, where γ1 and γ2 are formed
from ci−1 by recoloring S1 and S2, respectively. Thus, the colorings of S under γ1
and γ2 are negations of one another. One of these colorings, wlog γ1, is consistent
with c∗, and thus δ(γ1�S) = w (S ∩ R). Since γ2 is the negation of γ1, it holds that
δ(γ2�S) = w (S) − w (S ∩ R).

If the component S is badly colored, it must be that γ2 is chosen. For this to happen,
it must hold that δ(γ2�S) < 2δ(γ1�S). Simplifying, we get w (S) < 3w (S ∩ R),
completing the proof. ��
Corollary 3.3 If a component has weight larger than 3r , then the component is well-
colored.

Proof By Proposition 3.2 and the fact that for any component S, w(S ∩ R) ≤ r . ��
Lemma 3.4 The weight of nodes recolored by Algorithm 1 throughout the execution
is at most 3r .
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Proof Clearly, the total weight of nodes in R which change color during the algorithm
is at most w(R) = r . It remains to bound the weight of nodes that change color in
V \ R; denote the set of those nodes by U .

LetB ⊆ 2V be the collection of subsets of V whichwere badly-colored components
in the algorithm at some point. We claim that B is a laminar collection – that is, for
every two components S1, S2 ∈ B it holds that either S1 ⊆ S2, S2 ⊆ S1 or S1∩S2 = ∅.
Indeed,B is laminar since it is contained in the collection of all connected components
which are formed in the algorithm, which is itself laminar.

Since B is a laminar collection, there exists a subcollection B′ ⊆ B of disjoint
components such that

⋃
S∈B S = ⋃

S∈B′ S.
Consider any node v ∈ U . The coloring c∗ is consistent with c0 on this node

v; thus, for this node to change color during the algorithm, it must be part of some
badly-colored component at some point during the algorithm. This implies that U ⊆⋃

S∈B S = ⋃
S∈B′ S.

w (U ) =
∑

S∈B′
w (U ∩ S) ≤

∑

S∈B′
w ((V \ R) ∩ S)

=
∑

S∈B′
w (S \ R)

≤ 2
∑

S∈B′
w (S ∩ R) by Proposition 3.2

≤ 2w (R) = 2r .
��

Next, we define a potential function φ such that φ(i) = 6δ(ci ). Note that φ(0) = 0,
and that φ is nonnegative. Following the conventional notation, denote �φi = φ(i)−
φ(i − 1) for every i > 0.

For every i ∈ N, let algi be the cost incurred by the algorithm in step i , i.e.,
δH (ci , ci−1). Define

I+ def= {
i | algi + �φi > 0

}
.

Then we have

alg =
∑

i

algi ≤
∑

i

(algi + �φi )

≤
∑

i∈I+
(algi + �φi ) ≤

∑

i∈I+
7algi , (1)

where the last inequality uses the fact that changing the coloring of nodes of total
weight s increases the coloring’s weighted Hamming distance from c0 by at most s,
and thus increases φ by at most 6s.
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Proposition 3.5 If v ∈ V is recolored in step i ∈ I+, then the weight of the connected
component of v grows by a factor of at least 5

4 in step i . That is, denoting by S, S′ the
old and new components of v respectively, it holds that w

(
S′) ≥ 5

4w (S).

Proof Node v changes color when some components S1, S2 ∈ Pi−1 are merged to
form S ∈ Pi , and one of these components, wlog S2, changes color, where v ∈ S2.
We now must show that w (S) ≥ 5

4w (S2). Denote by γ1 and γ2 the colorings formed
from ci−1 by recoloring S1 and S2 respectively; since S2 is recolored, the algorithm
chose γ2.

If γ2 is chosen in line 12 of Algorithm 1, then triviallyw (S) ≥ 2w (S2) ≥ 5
4w (S2)

and the proof is complete.
Otherwise, the algorithm chose γ2 in line 8 because δ(γ1�S) ≥ 2δ(γ2�S). Let us

denote s1 = w (S1), s2 = w (S2), x1 = δ(ci−1�S1) and x2 = δ(ci−1�S2). It holds that
δ(γ1�S) = s1 − x1 + x2 and δ(γ2�S) = s2 − x2 + x1. Thus,

s1 + x2 ≥ s1 − x1 + x2 ≥ 2(s2 − x2 + x1) ≥ 2(s2 − x2) ,

and therefore s1 ≥ 2s2 − 3x2. Adding s2 to both sides, we have that

s1 + s2 ≥ 3(s2 − x2) . (2)

Now, recall that i ∈ I+, and thus

0 ≤ algi + �φi = s2 + 6((s2 − x2) − x2) = 7s2 − 12x2 . (3)

Eq. (3) implies that x2 ≤ 7
12 s2. Plugging into (2),we getw (S) = s1+s2 ≥ 3s2−3x2 ≥

3s2 − 7
4 s2 = 5

4 s2 = 5
4w (S2) which completes the proof of the proposition. ��

Proof of Theorem 3.1 By Eq. (1), it is enough to bound 7
∑

i∈I+ algi . Consider any
step i in which some component S ∈ Pi−1 is recolored, upon being connected to

a second component in Pi−1. Consider the subset W
def=

{
u ∈ S | w (u) <

w(S)
2n

}
. It

holds that w (W ) ≤ n · w(S)
2n = w(S)

2 , and thus w (S) ≤ 2w (S \ W ). Therefore,

algi = w (S) ≤ 2w

({

u ∈ S | w (u) ≥ w (S)

2n

})

. (4)

Plugging Eq. (4) into Eq. (1), and denoting by Si ∈ Pi−1 the component that was
recolored in step i , it thus remains only to bound the term

14
∑

i∈I+
w

({

u ∈ Si | w (u) ≥ w (Si )

2n

})

. (5)

Using Lemma 3.4, and denoting by U the set of nodes recolored by the algorithm,
we know that w (U ) ≤ 3r . Consider a node u ∈ U : each time the node u is recolored
in a step from I+, the weight of the component containing u grows by a factor of
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at least 5
4 (by Proposition 3.5). Thus, each node can be recolored in steps from I+

at most O(log n) times before the weight of u’s component exceeds 2n · w (u). This
implies that the term in Eq. (5) can be bounded by O(log n) · w (U ) = O(log n) · r ,
and thus alg ≤ O(log n) · r , completing the proof. ��

3.3 A Lower Bound

We present a general lower bound in the unweighted case. We note that a similar
argument is used in [14] by Kashyop et al., where it is shown in the context of data
structures that any deterministic algorithm that maintains a 2-coloring must perform,
in the worst case, t edge insertion require �(t log t) recolorings.

Theorem 3.6 The competitive ratio of any randomized algorithm for recoloring bipar-
tite graphs is �(log(n)).

Let A(I ) be the cost of algorithm A on an instance (input sequence) I . According
to Yao’s principle, it suffices to show an instance distribution D such that the expected
cost of every deterministic algorithm A is E[A(I )] = �(log n)E[opt(I )], where the
expectation is for instances chosen by D. In the proof below we construct such a
distribution.

Proof Assume w.l.o.g. that n is a power of 2 (otherwise, we work only with 2�log n�
nodes, leaving the others isolated). We construct an input sequence in log n phases,
while maintaining the following invariant:

After each phase h: (i) there are n/2h connected components, and (ii) each
connected component is a chain of 2h nodes.

Clearly, the invariant holds before the execution begins, when there are n isolated
nodes. Note that we allow for any initial coloring.

In each phase h, for h = 1, . . . , log n, we connect segments in pairs by introduc-
ing n/2h edges: each edge connects random endpoints of two segments (this is the
only randomization we use). This obviously maintains the invariant after phase h is
completed.

Consider phase h for h > 1. The merging segments are of even length 2h−1 each,
and hence each segment has exactly one endpoint of each color. It follows that by
construction, each new edge is monochromatic with probability 1/2. Therefore the
expected cost incurred in phase h > 1 for any deterministic algorithm is

n

2h
· 1
2

· 2h−1 = n

4
,

because in phase h there are n/2h merges, and each merge has expected cost 1
2 · 2h−1.

In summary, the cost of any deterministic algorithm on a random instance defined as
above, over all phases, is at least (log n − 1) · n/4 = �(n log n) (the cost of phase 1
depends on the initial coloring). On the other hand, the optimal cost for any n-node
graph is never more than n: every node needs to be colored at most once, according
to the final graph. The result follows. ��
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4 (1+1) Disengagement

In this section we consider (� + 1)-coloring, where � is an upper bound on the
number of neighbors a node may have. We show that in this case, the competitive ratio
of deterministic disengagement is �(�) and that the randomized competitive ratio is
�(log�).

4.1 Algorithms

We now present our algorithms for the � + 1 disengagement problem. Algorithm 2
is used in both the deterministic and randomized versions: The only difference is the
implementation of the “recolor” subroutine it invokes (Algorithms 3 and 4). To see
how the algorithm works, let us define an auxiliary graph G ′

i = (V , E ′
i ) as follows:

(u, v) ∈ E ′
i ⇐⇒ (u, v) ∈ Ei and c0(u) = c0(v) ,

i.e., the auxiliary graphG ′
i includes only edges that connect nodes with the same initial

color. The underlying idea of Algorithm 2 is to maintain a small-weight vertex cover
of G ′, denoted C , and apply recoloring only to nodes in C . (It turns out that there is
no need to remember the initial coloring.) For a deterministic algorithm, we recolor
using the procedure given in Algorithm 3: change the node’s color to the first available
color, where a color is said to be available if it is not taken by any neighbor. For a
randomized algorithm, we choose uniformly at random among the available colors
(Algorithm 4).

To maintain a light vertex cover, we use the classical 2-approximation algorithm
of Bar-Yehuda and Even [4] (we can use any other algorithm which processes edges
one at a time). Whenever an uncovered edge is considered, the residual weights of its
endpoints are reduced by the same amount so that one of them reaches zero. The node
with residual weight 0 (possibly both) is then added to C .

Theorem 4.1 Algorithms 2 with Algorithm 3 is a deterministic algorithm for � + 1
disengagement with competitive ratio O(�). Algorithm 2 with Algorithm 4 is a ran-
domized algorithm for�+1 disengagement with expected competitive ratio O(log�).

We first analyze the general framework of Algorithm 2.

Lemma 4.2 After every step, C is a vertex cover of G ′. Moreover, w(C) is at most
twice the weight of any vertex cover of G ′.

Proof We first argue that C is a vertex cover of G ′. Let ei = (u, v) ∈ E ′. We consider
two cases. If ei is monochromatic upon arrival, then Algorithm 2 makes sure that if
none of its endpoints are in C , then at least one of them enters C (lines 8–18), so ei
is covered by C in this case. If ci (u) �= c0(u), then node u was necessarily recolored
at some point in the past. However, since Algorithm 2 recolors only nodes in C , we
must have u ∈ C , so ei is covered by C in this case too. Finally, the approximation
bound of w(C) follows from [4]. ��
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Algorithm 2 (� + 1)-disengagement: Upon arrival of edge (u, v) in step i
1: if ci−1(u) �= ci−1(v) then return // ci = ci−1, no recoloring
2: else if |{u, v} ∩ C | = 1 then
3: let x ∈ {u, v} be the node in C
4: recolor(x)
5: else if |{u, v} ∩ C | = 2 then
6: let x ∈ {u, v} be the node with the higher degree // break ties arbitrarily
7: recolor(x)
8: else if {u, v} ∩ C = ∅ then
9: wi (u) ← wi−1(u) − min(wi−1(u), wi−1(v)) // w0(v) = w(v) for all v ∈ V
10: wi (v) ← wi−1(u) − min(wi−1(u), wi−1(v))

11: if wi (u) = 0 then
12: C ← C ∪ {u}; x ← u
13: end if
14: if wi (v) = 0 then
15: C ← C ∪ {v}; x ← v

16: end if
17: recolor(x)
18: end if

Lemma 4.3 Every algorithm pays a cost of at least w(C)/2.

Proof Consider any solution to the given input. The edges in E ′ are monochromatic
by the initial coloring, so every disengagement algorithm has to recolor at least one
endpoint of every edge in E ′ at least once. Therefore, the set of nodes recolored by
any solution is a vertex cover of G ′. The result follows now from Lemma 4.2. ��

We now consider the way recoloring is done. First, the deterministic version.

Lemma 4.4 Algorithm 2 with Algorithm 3 pays at most � · w(C).

Proof By the code, Algorithm 2 recolors only nodes in C . Observe that a node may
be recolored only when a new incident edge is introduced. Since the maximum degree
of a node is �, the result follows. ��

If we use randomized recoloring, we have the following. Let H� denote the �th

harmonic number, i.e., H� = 1 + 1
2 + · · · + 1

�
.

Lemma 4.5 The expected cost of Algorithm 2 with Algorithm 4 is at most H� · w(C)

Algorithm 3 recolor(u): recolor node u with the first available color
1: Let S = {c(v) | (u, v) ∈ E}
2: c ← min ({1, . . . ,� + 1} \ S)

3: c(u) ← c

Algorithm 4 recolor(u): randomly recolor node u with an available color
1: Let S = {c(v) | (u, v) ∈ E}
2: Let c ∈R ({1, . . . ,� + 1} \ S) // choose randomly
3: c(u) ← c
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Proposition 4.6 Consider any two distinct nonadjacent nodes u, v ∈ C. At any itera-
tion, it holds that

Pr(c(u) = c(v)) ≤ max

{
1

� + 1 − deg(u)
,

1

� + 1 − deg(v)

}

.

Proof Letw ∈ {u, v} be the node that changed its color last (since both u, v ∈ C , they
both changed colors so w is always defined). It holds that:

Pr(c(u)=c(v)) = Pr(w=v)·Pr(c(u)=c(v) | w=v)

+ Pr(w=u)·Pr(c(u)=c(v) | w=u) .

Let Av denote the event that w = v, and assume that Av holds. Let t ′ denote the
last iteration in which v changed its color, and let deg′(v) be its degree at time t ′. Then
v chose its color uniformly at random from a set of available colors S whose size is at
least

(�+1−deg′(v)) ≥ (� + 1 − deg(v)) ≥ min{� + 1 − deg(u),� + 1 − deg(v)} .

Thus:

Pr(cu = cv | Av) =
∑

S′⊆[�+1]

∑

s∈S′
Pr
(
S= S′ | Av

) · Pr (cu =cv =s | S= S′, Av

)

≤
∑

S′⊆[�+1]

∑

s∈S′
Pr
(
S= S′ | Av

) · Pr (cu =s | S= S′, Av

) · Pr (cv =s | cu =s, S= S′, Av

)

︸ ︷︷ ︸
=1/|S′ |

=
∑

S′⊆[�+1]
Pr
(
S= S′ | Av

) · 1

|S′| ·
(
∑

s∈S′
Pr(cu =s | S= S′, Av)

)

︸ ︷︷ ︸
≤1

≤
∑

S′⊆[�+1]
Pr
(
S= S′ | Av

) · max

{
1

� + 1 − deg(u)
,

1

� + 1 − deg(v)

}

= max

{
1

� + 1 − deg(u)
,

1

� + 1 − deg(v)

}

.

��
Proposition 4.7 Consider any two nonadjacent nodes v ∈ C and u /∈ C. At any
iteration, it holds that

Pr(c(u) = c(v)) ≤ 1

� + 1 − deg(v)
.

Proof The proof is similar to that of Proposition 4.6. Observe the last iteration in
which v had changed its color, and denote its degree at that iteration as deg′(v).
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At that time, v chose a random color from a set S of available colors, such that
|S| ≥ � + 1− deg′(v) ≥ � + 1− deg(v). Additionally, since u /∈ C , it has its initial
coloring c(u) = c0(u). Therefore:

Pr(cu =cv) ≤
∑

S′⊆[�+1]
Pr(S= S′) · Pr(cv =cu | S= S′)

≤
∑

S′⊆[�+1]
Pr(S= S′) · 1

|S′|

≤ 1

� + 1 − deg(v)

∑

S′⊆[�+1]
Pr(S= S′) = 1

� + 1 − deg(v)
,

where the second inequality is due to the fact that Pr(cv = cu | S = S′) equals 0 if
c(u) /∈ S′ and equals 1

|S′| otherwise. ��
Proof of Lemma 4.5 Fix the input sequence. Let X be a random variable representing
the overall cost of running the algorithm, and let Xv be a random variable representing
the cost incurred by recoloring a given node v ∈ V . We bound E[Xv].

Since Algorithm 2 recolors only the nodes inC , consider v ∈ C . Let ev
1, . . . , e

v
deg(v)

be the subsequence of input edges incident on v. Let Xv
j denote the expected cost of

recoloring v due to edge ev
j . We bound E[Xv

j ] as follows. Suppose that v is recolored
for the first time when e j0 is input (if none exists, we are trivially done). Then for
j = j0 we have E[Xv

j0
] = w(v). For j > j0, consider the arrival of ev

j = (v, u).

• If u /∈ C , then v changes its color w.p ≤ 1
�+1− j (according to Proposition 4.7)

• If u ∈ C and j < deg(u), then v does not change its color
• If u ∈ C and j ≥ deg(u), then v changes its color w.p ≤ 1

�+1− j (according to
Proposition 4.6)

Therefore, the expected cost incurred by v due to ev
j is at most w(v)

�+1− j .
It follows that the expected cost incurred by the recoloring of node v ∈ C is at

most

E[Xv] = E

⎡

⎣
deg(v)∑

j=1

Xv
j

⎤

⎦ ≤ w(v) +
deg(v)∑

j= j0+1

E
[
Xv

j

]
≤ w(v) +

deg(v)∑

j=2

w(v)

� + 1 − j

≤ w(v) · Hdeg(v) .

We can therefore summarize that the expected cost due to all nodes is at most

E[X ] = E

[
∑

v∈V
Xv

]

= E

[
∑

v∈C
Xv

]

=
∑

v∈C
E
[
Xv

] ≤
∑

v∈C
w(v) · Hdeg(v)

≤ w(C) · H� .

��
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Proof of Theorem 4.1 Follows from the lower boundon theoptimumcost ofLemma4.3,
and from the upper bounds on the cost of the deterministic algorithm (Lemma 4.4),
and on the expected cost of the randomized algorithm (Lemma 4.5). ��

We note that our deterministic algorithm does not require knowledge of �, but the
randomized one does.

4.2 Lower Bounds for (1+ 1)-Recoloring

We now state lower bounds on the competitive ratios of deterministic and randomized
algorithms for (�+1)-recoloring.Weprove the lower bounds in unweighted instances,
i.e., the weight of each node is one. We start with a deterministic lower bound.

Theorem 4.8 The competitive ratio of any deterministic algorithm solving (� + 1)-
recoloring is �(�), for any initial coloring.

We need the following lemma.

Lemma 4.9 The optimal algorithm’s cost after the i-th step is at most the number of
non-isolated nodes in Gi = (V , Ei ).

Proof Since edges are constantly added to the graph Gi , any coloring that is proper
for Gi is also proper for G j , where j ≤ i . The optimal offline algorithm can color
Gi greedily using � + 1 colors, and use this coloring until the i-th step. Since every
node is recolored at most one time, and the optimal algorithm might only recolor the
non-isolated nodes, its cost is at most the number of such nodes. ��
Proof of Theorem 4.8 Let a deterministic algorithm be given. We construct an input
sequence in phases as follows. First we choose a set of some � + 2 nodes, denoted
V ′. Note that since |V ′| > � + 1, according to the pigeonhole principle, there must
be at least two nodes u, v ∈ V ′ with the same color. We then proceed in phases, where
each phase is described as follows.

1. Do until ∃v ∈ V ′ with deg(v) = �:

(a) Select two nodes u1, u2 ∈ V ′ s.t. c(u1) = c(u2)
(b) Add edge (u1, u2)

2. Let V� = {v ∈ V ′ | deg(v) = �}. (Note that 1 ≤ |V�| ≤ 2.)
3. Let V0 ⊆ V be a set of |V�| isolated nodes
4. V ′ ← V0 ∪ V ′ \ V�

Note that the number of phases can be as large as we wish, since it is bounded only by
the number of nodes, regardless of k and �. Consider the cost of the online algorithm.
Every new edge is monochromatic, so it pays a cost of 1 for each new edge. After s
phases, at least s nodes have left V ′, each with a degree of�. It follows that the cost of
the online algorithm for s phases is at least s ·�/2 (since every edge could be counted
twice).

On the other hand, by Lemma 4.9, the optimal cost is no more than the number of
non-isolated nodes. This number is bounded by the number of nodes that ever were in
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V ′, and hence, in s phases, it is at most 2s + � + 2: at most 2s nodes were removed
from V ′, and at most � + 2 nodes are in V ′ after s phases. It follows that for s � �

phases, the competitive ratio of any deterministic algorithm is �(�). ��
Intuitively, in the �(�) lower-bound proof, both Online and Offline always have

to pay (a cost of at least 1) when the new edge creates a new connected component (of
size 2), since it involves two nodes that still have their initial coloring. However, the
Offline algorithm does not have to pay when the edge is incident on a node that Offline
had already changed. We now present a lower bound for randomized algorithms.

Theorem 4.10 The competitive ratio of any randomized algorithm for (�+1)-coloring
is�(log(�)), assuming that in the initial coloring there are at least two nodes of each
color.

Proof Let A(I )be the cost of algorithm A on an instance (input sequence) I . According
to Yao’s principle, if there is an instance distribution, for which the expected cost of
every deterministic algorithm A is E[A(I )] ≥ L , then for every randomized algorithm
there exists an instance I such that the algorithm’s expected cost on I is at least L .
We construct a distribution over input sequences as follows. First we pick a random
permutation σ : [� + 1] → [� + 1] of the colors. We then introduce the edges in
phases as follows. In the first phase we pick two nodes v0, v1 ∈ V of color σ(1) and
connect them with an edge. In each subsequent phase i , i ≥ 2, we pick a node vi of
color σ(i) and connect it to all nodes v0, . . . , vi−1. Clearly, after phase i , the input
edges constitute a clique over v0, v1, . . . , vi . After phase � we stop (we can repeat
the construction with a fresh set of � + 1 isolated nodes).

For the cost analysis, let Ci denote the set of colors used by nodes v0, . . . , vi
after phase i . Clearly |Ci | = i + 1. In particular, for any deterministic algorithm,
there exists at least one color c∗

i ∈ Ci \ {σ(1), . . . , σ (i)}. Consider now the node
vi+1, added in phase i + 1. Its color is σ(i + 1), which is uniformly distributed
over [� + 1] \ {σ(1), . . . , σ (i)}, and hence Pr[σ(i + 1) = c∗

i ] = 1
�+1−i . It follows

that the expected number of monochromatic edges (which is the expected cost of the
deterministic algorithm) in phase i + 1 is at least 1

�+1−i . Also by construction, the
number of monochromatic edges in the first phase is 1. Therefore, the total expected
cost across all phases is

E[cost] ≥ 1 +
�−1∑

i=1

1

� + 1 − i
= H� = O(log�) ,

where Hn denotes the nth harmonic sum. On the other hand, an optimal algorithm
would pay a cost of 1 by recoloring only a single node in the first iteration with the
single color that is never used, namely color σ(� + 1). ��

5 General Lower Bounds for k Colors

By combining the techniques of Sects. 3.3 and 4.2, we can prove stronger lower bounds
on the competitiveness of recoloring algorithms. We note that while such coloring is
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NP-hard in general, the lower bound presented in Sect. 5.1 holds for a particular family
of easily-colorable graphs.

In Sect. 5.2 we briefly discuss the capacitated case, in which each machine (i.e,
color) has a limited capacity, and provide a lower bound for the tight case, wherein
the total (color) capacity equals the total (node) weight.

5.1 General Lower Bound

Theorem 5.1 The competitive ratio of recoloringn nodeswith k colors is�(k log(n/k))
for deterministic algorithms and �(log k · log(n/k)) for randomized algorithms.

Proof We use a single framework, with unweighted graphs, for both the deterministic
and the randomized case. We assume that n ≥ 3k. No generality is lost: If n < 3k,
the claimed bounds follow from Theorems 4.8 and 4.10, by using only k nodes and
leaving the others isolated (the case k > n is equivalent to k = n).

Assume further that n/k = 2M for some integer M (otherwise, define n′ = k ·
2�log(n/k)� and use n′ instead of n).

In the construction, we use k-cliques, i.e., fully-connected graphs of k nodes. We
say that two k-cliques K1, K2 are aligned in edge set E if for every node u1 ∈ K1,
there is exactly one node u2 ∈ K2 such that (u1, u2) /∈ E . Such nodes are called
partners. We use the term K-chain of length d to refer to a sequence of d aligned
k-cliques. Given a node u in a k-chain, partner(u) denotes the set of nodes that are
partners of u, including u. We note the following immediate fact for any k-chain Z .

• Any proper coloring c of Z satisfies, for all nodes u, v ∈ Z : if v ∈ partner(u) then
c(u) = c(v).

We now describe the construction in phases. First there is a setup phase (phase 0), in
which n

k

(k
2

) = n(k − 1)/2 edges are introduced to create n/k disjoint k-cliques. Next
we run M = log(n/k) phases, such that the following invariant holds. ��
Invariant 5.2 After each phasem = 0, . . . , M, there are (n/k)·2−m k-chains of length
2m.

To maintain the invariant, in each phase m ≥ 1 we group the k-chains in pairs
and “stitch” each pair of k-chains to obtain k-chains of double length: we do that by
selecting an extreme k-clique from each k-chain and introducing k(k − 1) edges, that
connect each node in these k-cliques to k − 1 nodes of the other k-clique.

More specifically, let u11, . . . , u
1
k denote the nodes of a k-clique which is the end

clique in one of the k-chains, and let u21, . . . , u
2
k denote the nodes of a clique at the

endpoint of the other k-chain. The goal of stitching is to make these cliques aligned
while making any online algorithm pay as much as possible. The way stitching is
implemented, described next, is the only difference between the deterministic and the
randomized cases.

Deterministic Stitching. We proceed node by node. We connect u11 to a node u2j1
such that c(u11) = c(u2j1). As a result, at least one of these nodes (and all its partners)
changes its color. Since the algorithm is deterministic, the new coloring c′ can be
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computed. We then connect u11 to a node u
2
j2
such that c′(u11) = c′(u2j2). We continue

this way, connecting u11 to k − 1 nodes. We then proceed to u12, again connecting it to
a node of the same color in each step. However, for u12 we do that only k − 2 times,
since the color of u11 and its partner will never appear in the sequence.We complete the
edges of u12 by connecting it to the partner of u

1
1. In general, for node u

1
j , we introduce

k − j edges that connect it to nodes of the same color (at the time the edges arrive),
and then edges that connect u1j to the partners of u

1
1, . . . , u

1
j−1.

Randomized Stitching. This case is simpler to describe: For each node u1j in the
first k-clique we pick a random permutation σ j : [k] → [k], and we introduce the
following k − 1 edges:

(
u1j , u

2
σ j (1)

)
,
(
u1j , u

2
σ j (2)

)
, . . . ,

(
u1j , u

2
σ j (k−1)

)
.

This concludes the description of randomized stitching.
In both cases of stitching, the final graph is a k-chain of length n/k. Note that this

graph is easily colorable using k colors: pick any k-clique K , assign the k colors to
the nodes of K arbitrarily in a 1-1 fashion, and then color each remaining node by the
color of its partner in K . Clearly, this can be done off-line at cost at most n.

In Lemma 5.3 below we show that for deterministic algorithms, the cost of every
phase m = 1, . . . , M is at least n(k − 1)/4, for a total cost of at least Mn(k − 1)/4 =
�(nk log(n/k)). In Lemma 5.4 below we show that for randomized algorithms, the
expected cost of every phase m = 1, . . . , M is at least 1

4nHk/2, for total expected cost
of at least 1

4MnHk/2 = �(n log k log(n/k)). Since the optimal cost is at most n, the
result follows.

Lemma 5.3 Given any deterministic algorithm, the cost of every phase m = 1, . . . , M
is at least n(k − 1)/4.

Proof By construction, when introducing the edges for node u1j , the first k − j edges
are monochromatic, and cause recoloring. Since all partners are recolored, and since
by Invariant 5.2 in phase m there are 2m−1 aligned cliques in each k-chain, we have
that the cost incurred by the edges of node u1j is (k − j)2m−1, hence the total cost

due to a single stitching in phase m is
∑k

j=1(k − j)2m−1 = k(k − 1)2m−2. Since by
Invariant 5.2 there are (n/k)2−m pairs to stitch in phase m, the lemma follows. ��
Lemma 5.4 Given any randomized algorithm, the expected cost of every phase m =
1, . . . , M is at least 1

4nHk/2.

Proof We use Yao’s principle. The distribution of the input instances is defined in the
specification of the phases. It therefore suffices to bound from below the expected
cost of phase m for any deterministic algorithm. Consider the edges added for node
u1j , and let us focus on edge (u1j , u

2
σ j (l)

), for some l ∈ [1, k − j]. The color of one of
its endpoints is deterministic, given σ j (1), . . . , σ j (l − 1), and the other is uniformly
random from [k] \ {σ j (1), . . . , σ j (l − 1)

}
. Therefore, the probability that (u1j , u

2
σ j (l)

)

is monochromatic is 1
k−l+1 . Since recoloring a node implies recoloring all its 2m−1
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partners, we have that the total expected cost due to the edges incident on u1j in phase

m is at least
∑k− j

l=1
1

k−l+12
m−1 = (Hk − Hj )2m−1. Summing over all nodes, we get

that the total expected cost of stitching a pair of chains in phase m is at least

k∑

j=1

2m−1(Hk − Hj ) ≥ 2m−1
�k/2�∑

j=1

(Hk − Hj ) ≥ 2m−1 · k
2

· Hk/2 ,

where Hx here means H�x�. Since there are (n/k)2−m pairs of chains to connect in
phase m, the result follows. ��

5.2 Lower Bounds for the Capacitated Case

In the capacitated disengagement variant of the problem, we model the case where
machines have limited capacity. This constraint is formalized as follows. We assume
that for each color i ∈ [k] we are given a color capacity Wi ∈ N , and we require that
in any coloring output by the recoloring algorithm, the total weight of nodes colored i
is at most Wi . We assume that the sum of all color capacities is at least the sum of all
node weights. The case where the total capacity equals the total weight is called tight.
2 Note that if the instance is tight, then a node cannot be recolored alone: recoloring
must be done by swapping colors with other nodes.

We prove the following results.

Theorem 5.5 The competitive ratio of deterministic algorithms for tight capacitated
recoloring is �(n), even if nodes are unweighted.

Theorem 5.6 The competitive ratio of randomzed algorithms for tight capacitated
recoloring is �(log n), even if nodes are unweighted.

We use the same framework for both the deterministic and the randomized cases.
There are n = kW nodes of weight 1 each, and the capacity of each of the k colors is
W .

The adversary constructs the following input sequence, which selects a set ofW −1
nodes (denoted A′) with the same initial color, and creates edges between them and
all of the other nodes, except one:

1. A′ ← {u | c0(u) = 1}
2. Let a0 be some node in A′
3. A′ ← A′ \ {a0}
4. V ′ ← V \ A′
5. Do (n − W ) times

51 select a node v ∈ V ′ (see below)
52 create the edges A′ × {v}
53 V ′ ← V ′ \ {v}

2 In the case of weighted nodes, an algorithm for tight capacitated disengagement needs to solve the NP-
hard problem of PARTITION [9] even when k = 2. Our lower bounds, however, apply to the unweighted
nodes case, for which PARTITION is trivial.
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The difference between the deterministic and the randomized cases is the way the
selection of step 51 is implemented. We now proceed to present of the remainder of
the proofs.

Proof of Theorem 5.5 For deterministic algorithms, the node v ∈ V ′ selected in step
(51) is such that its color is the color of some node in A′. This is always possible since
there are exactly W nodes in each color, and the set A′ is of size (W − 1) (the first
node that fulfills it is a0). Hence, any online deterministic algorithm pays a cost of at
least 2 in each iteration of the loop of step (5), for a total cost of at least 2(n − W ) for
all iterations.

After step (5) is repeated (n−W ) times, only one node v′ /∈ A′ may have the same
color as any node in A′. Therefore, any valid coloring must have all nodes in A′ as
well as v′ in the same color. The optimal algorithm swaps the colors of node a0 and
node v′, paying a cost of 2 for the entire sequence. The competitive ratio of any online
deterministic algorithm for the capacitated case is �(n). ��
Proof of Theorem 5.6 Again we use Yao’s principle. We specify an input distribution
and prove a lower bound for the expected cost of any deterministic algorithm. The
distribution is definedby implementing step (51) using a randomselection: v is selected
uniformly at random from V ′.

As before, there must be at least one node in V ′ (but not in A′) that is colored
the same as some node in A′, and therefore the expected cost of any deterministic
algorithm in step (5) is at least 2 · 1

|V ′| . The size of V
′ starts at (n −W ), and decreases

by 1 each loop until it reaches 1. Therefore we can bound from below the total expected
cost for any deterministic algorithm:

Ecost ≥ 2 ·
⎛

⎝1 +
(n−W )∑

|V ′|=2

1

|V ′|

⎞

⎠ = 2 · Hn−W

Note that Hn−W = Hn−n/k ≥ Hn/2 for k > 1. As the optimal algorithm pays a cost
of 2, we get that the competitive ratio of any randomized algorithm in the capacitated
case is �(log(n)). ��

6 Fully Dynamic Disengagement

6.1 Models of Fully-Dynamic Disengagement

In previous sections , we considered the partially-dynamic variant of the disengage-
ment problem, in which every new edge is an additional, permanent constraint. In this
section, we consider the fully-dynamic variant of the online disengagement problem
(abbreviated FD below), where at every iteration i , the edge constraints may also be
deleted (in FD, input sequences may be of unbounded length). It turns out that FD is
more difficult than partially-dynamic disengagement. In this section we first discuss
various plausible models of FD and show their equivalence, and then show that even
a very simple dynamic instance forces an �(n) lower bound on the competitiveness
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of deterministic algorithms. The latter result is obtained by reduction from Metrical
Task Systems.

There are several (yet equivalent) ways to define the fully-dynamic Disengagement
problem:

The single edge model (SE): At iteration i upon the arrival of edge ei = (u, v), the
algorithmmust make sure that ci (u) �= ci (v), i.e, only the coloring of the last edge
must be maintained.

Expiration time model (ET): Every edge arrives with a prescribed expiration time -
after which it is deleted.

Edge insertions and deletions model (InD): In this model, at every iteration either an
existing edge in the graph is deleted, or an non-existing one appears. The algorithm
is required at every iteration to maintain a proper coloring of the graph.

We first argue that the models are essentially equivalent.

Theorem 6.1 A lower bound on the competitive ratio of (randomized) algorithms
under one of the three models of dynamic disengagement, holds under the other two
models as well.

Theorem 6.1 is proven using the following three lemmas.

Lemma 6.2 If ρ1 is a lower bound on the deterministic (or randomized) competitive
ratio for the “SE” model, then ρ1 is a lower bound on the deterministic (respectively,
randomized) competitive ratio for the “ET” model.

Proof It can be easily shown that any input sequence of the “SE” model is also an
input sequence of the “ET” model, with the expiration time of every edge set to 1.
Since the lower bound for the special case also holds for the general case, the claim
holds. ��
Lemma 6.3 If ρ2 is a lower bound on the deterministic (or randomized) competitive
ratio for the “ET” model, then ρ2 is a lower bound on the deterministic (respectively,
randomized) competitive ratio for the “InD” model.

Proof It can also be demonstrated that any input sequence of the “ET” model can be
represented using the “InD” model. Each time an edge is presented (or expires) in the
former model, it is inserted (or deleted) in the latter model. ��
Lemma 6.4 If ρ3 is a lower bound on the deterministic (or randomized) competitive
ratio for the “InD” model, then ρ3 is a lower bound of the deterministic (respectively,
randomized) competitive ratio for the “SE” model.

To prove Lemma 6.4, we first prove the following lemma:

Lemma 6.5 Let A be a (possibly randomized) disengagement algorithm in the “SE”
model, with a bounded competitive ratio. Then for any input sequence I in the “InD”
model, there exists an input sequence ID in the “SE” model such that with probability
1, A, when run on ID, outputs a proper coloring of Gi , where Gi = (V , Ei ) is the
graph in the “InD” model, after iteration i .
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Proof We construct ID by repeating the edges of Ei cyclically. Specifically, for each i ,
ID contains a sequence of phases, where in each phase, all edges of Ei are introduced
(in any order). The number of phases depends on A: we claim that for any ε > 0 there
exists Mε such that the probability that A outputs a proper coloring of Gi after Mε

phases is least 1 − ε.
To prove the claim, suppose, for contradiction, that for some ε > 0, the probability

of A outputting a proper coloring of Gi after any number of phases is never more
1 − ε. Then, with probability of at least ε, A pays at least 1 in each phase (when a
monochromatic edge is inserted). The total expected cost of A is therefore unbounded.

On the other hand, the optimal cost is at most |V |, contradicting the assumption
that A has bounded competitive ratio. ��
Proof of Lemma 6.4 Assume, for contradiction, that there exists an algorithm Ad for
the “SE” model with a competitive ratio strictly smaller than ρ3. We construct an
algorithm As for the “InD” model as follows. Given input I = {G1,G2, . . .} (in the
“InD” model), As runs Ad on input ID (in the “SE” model) as defined in Lemma 6.5.

According toLemma6.5, since Ad has a bounded competitive ratio, then Ad outputs
a solution to Ei w.p. 1. Hence, As is well defined.

To analyze the cost, consider iteration i of As . Let cmi denote the output of Ad after
Ei was input to it for m-th time, and let ci denote the output of As in the i-th step.

Let opts denote an optimal solution to I and let optd denote an optimal solution
to Id . Then we have

cost(As(I )) =
∑

i=1

δH (ci , ci−1)

≤
∑

i=1

M∑

m≥1

δH (cmi , cm−1
i ) by construction

= cost(Ad(Id))

< ρ3 · cost(optd(Id)) by assumption on competitiveness ofAd

≤ ρ3 · cost(opts(I )) becauseopts(I ) is also a solution to Id ,

contradicting the assumption that ρ3 is a lower bound on the competitiveness of deter-
ministic algorithms for the “InD” model. ��

We note that FD is at least as hard as the partially-dynamic model.

Corollary 6.6 If ρ is a lower bound on the deterministic (or randomized) competitive
ratio for partially-dynamic disengagement, thenρ is a lower bound of the deterministic
(respectively, randomized) competitive ratio for fully-dynamic disengagement.

Proof The partially dynamic (PD) disengagement model can be directly represented
by the FD “ET” model, with the expiration time of every edge set to ∞. Hence, the
lower bound for the PD case also holds for the “ET” model, and according to Theorem
6.1, such bound holds for any of the other FD models. ��
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6.2 Full-Dynamic Disengagement andMetrical Task Systems

We now give evidence to the hardness of FD disengagement using a reduction from
metrical task systems (MTS). Let us first define the terms.

In the MTS problem [7], a metric space M of n points is given. A server is always
located at some point in the metric space. Requests arrive in an online fashion, where
the i’th request is a cost function fi : M → R

+. The algorithm responds to a request
fi by moving the server from its current location u ∈ M to a new location v ∈ M ,
paying the distance between the locations in themetric space (or notmoving the server,
and paying nothing). Then, the algorithm must pay the cost of the current location of
the server, which is fi (v). We show that FD is as hard as a particular type of an MTS.

Theorem 6.7 If there exists an O( f (n))-competitive algorithm for FD disengagement
for every graph of n nodes with 2 colors, then there exists an O( f (n))-competitive
algorithm for metrical task system on an odd cycle on length n.

In [7], a lower bound of �(n)-competitive was presented for every deterministic
algorithm for MTS on every set of n points. Hence we have the following.

Corollary 6.8 Any deterministic algorithm for FD disengagement with n nodes is
�(n)-competitive.

A lower bound of �(log n/log log n)-competitiveness for every randomized algo-
rithm for MTS on every set of n points was given in [6]. This implies the following
corollary.

Corollary 6.9 Any randomized algorithm for FD disengagement with n nodes is

�
(

log n
log log n

)
-competitive.

Proof of Theorem 6.7 We assume without loss of generality that the functions in the
MTS input are in fact Kronecker delta functions: they are supported on only one point,
and the cost of that point is 1. We also assume w.l.o.g. that the FD disengagement
algorithm is lazy, i.e., it only recolors endpoints of the current request.

We now describe the reduction. Suppose we are given an instanceM of MTS with
an odd-cycle metric space C1 of n points. We construct an instance D of FD with n
points arranged in a cycle, such that the nodes of C1 correspond to the n edges of C2
in the natural way. The intended interpretation of nodes in C1 is colorings inD, where
a node x of C1 means in C2 that only the edge corresponding to x is monochromatic
(and all other edges in C2 are bichromatic). The initial coloring in D is such that the
only monochromatic edge inD is the edge corresponding to the initial position of the
server inM. Thereafter,whenever a point x ∈ C1 is requested inM, the corresponding
edge in C2 is requested in D. To see that the intended interpretation is maintained,
consider any algorithm ALGD for FD. Easy induction shows that after every step,
there is exactly one monochromatic edge in the odd cycle C2: The base case holds by
the initial coloring; for the induction step, note that if a non-monochromatic edge is
requested, no recoloring takes place. Otherwise, the currently monochromatic edge
e is requested, and ALGD must recolor exactly one endpoint of e. If the clockwise
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(say) endpoint of e is recolored, then e is no longer monochromatic, and the next edge
clockwise from e becomes monochromatic (and similarly for counter-clockwise), and
the induction is proved.

Given the reduction, algorithmALGM for theMTSproblem is obtained fromagiven
algorithm ALGD for FD by taking the MTS instanceM, reducing it online to the FD
instance D as desribed above, running ALGD on D, and interpreting the responses
of ALGD back in M. That is, whenever ALGD moves the monochromatic edge
clockwise, ALGM moves the server clockwise, and the same for counter-clockwise.
Clearly, we have that ALGD has the same cost on D as ALGM has on M.

Finally, denoting by OPTM and OPTD the optimal solutions to M and D respec-
tively, note that OPTD ≤ 2OPTM : OPTD can move the monochromatic edge
whenever OPTD moves the server, and can move the monochromatic edge clock-
wise and then immediately counter-clockwise to simulate paying a penalty (at a cost
of 2). This completes the proof of the theorem. ��

7 Conclusion

In this paper we have introduced the problem of online disengagement and determined
its competitive ratio in the case that conflicts are permanent and either that the final
graph is bipartite or that the number of colors is larger than the maximum degree.
Many problems remain open.

A major problem we leave open is the competitive ratio in the fully-dynamic case,
where conflicts are temporary.

Other natural variants that we leave for future research are the following.

• Explore further the capacitated disengagement case (Sect. 5.2). Using the color-
ing formalism, in this case we assume that each color l comes with prescribed
maximum capacity Wl such that in any coloring output by the algorithm, the total
number (or, more generally, weight) of nodes assigned to color l does not exceed
Wl .

• The list recoloring variant represents the case where jobs have both affinities and
anti-affinities, i.e., each job is given both a subset of machines on which it may
run, and disengagement requests express job separation constraints. Formally, this
is modeled by requiring the colorings output by the algorithm to be list colorings.
The lists may be fixed or change online.

• In multiple disengagement, disengagement requests are arbitrary sets of jobs. If
the requirement is that at least one of the jobs in a conflict set is not collocated
with all others, we have a hypergraph recoloring problem.

• Both Kashyop et al. [14] and Solomon and Wein [17] provide dynamic-coloring
algorithms in the case of bounded (or constant) arboricity. Their methods might
prove useful for the competitive recoloring case as well.

Note that all versions listed above make sense in either the static or the dynamic
variants of the disengagement problem.
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